

修订记录

版本	日期	修订内容
Rev1.0	2017/11/2	首次编制

1

目录

前言

安全须知

- 1. 使用前
- 2. 线阵相机的规格
 - 2-1. 概要
 - 2-2. 规格
 - 2-3. 接口
 - 2-4. 系统的连接及启动

3. 软件

- 3-1. 基本设置
- 3-2. 补正处理
- 3-3. 详细设置
- 3-4. 编码器处理
- 3-5. LED 控制(与 RC-Smartek LED 光源连接的情况下)
- 3-6. 波形显示
- 4. 相机的安装
- 5. 使用注意事项
- 6. 外形尺寸图
- 7. 附录

CameraLink 规格 命令通讯规格

前言

非常感谢您购买 Wide Range C.I.S. Line Scan Camera XC-OC 系列产品。

使用本产品时,请仔细阅读使用说明书。

安全须知

为了保证可安全地使用产品,请仔细阅读本安全须知后正确地使用。

标志	标志的含义
▲ 禁止	该标志表示禁止的内容。
⚠ 注意	该标志表示提醒注意的内容。
执行	该标志表示务必执行的行为。

在本书中无特别标注的情况下,设备(本机)是指包括机器主体及其组成零部件和装置、外围装置、附属设 备等系统整体。

	▲ 禁止
a)	避免产品受到强烈的撞击或振动。 否则,可能导致故障。
b)	禁止拆解、改装本产品。 否则,可能导致火灾、人员受伤、触电等事故或引发故障。 为了维持本产品保修的功能,切勿拆解本产品。此外,出于安全方面的原因,切勿进行改装。本公司不保证经过改 装的产品的性能。对于经过改装的产品,本公司可能拒绝提供修理。
c)	避免水和药品浇到本产品。 否则,可能导致故障、触电及火灾。
d)	避免异物附着到产品上。 否则,可能导致故障、触电及火灾。
e)	避免误接线。 否则,可能导致故障或火灾。因此,请仔细阅读本使用说明书,并按照正确的方法进行接线。

- f) 避免靠近电视和广播等。 请勿靠近电视和广播等产生强大磁场、电场的设备,或在这些设备附近使用本产品。否则,可能导致故障和误动作。
- g) 避免在存在烟火的场所使用。 否则,可能导致故障。
- h) 避免在湿气重的场所、可能淋雨的场所等使用。否则,可能导致故障。
- i) 避免在受阳光直射的场所使用。否则,可能导致故障。
- j) 避免在有尘埃和粉尘的场所使用。 否则,可能导致故障。
- k) 避免在充满药物气体、腐蚀性气体等的场所使用。 否则,可能导致故障。
 - ⚠ 注意

a) 注意防止静电。

本产品由易受静电影响的电子零件组成,因此静电可能引发产品故障。接触本产品时,请勿直接用手触摸端子、接插件、IC 等零部件的金属部分。

b) 发现疑似故障时:

怀疑发生故障时,请立即停止使用。如果继续使用已发生故障的产品,可能对其他产品产生不良影响,从而导致漏 电和火灾。

如果需要修理,请联系经销店或本公司营业部。

1. 使用前

请确认以下交付的货物。

(1)	线阵相机	XC-0C103850	1台
(2)	相机电源线	CLC-PS50-2	1 根
(3)	使用说明书 (本书)		1套
(4)	软件 (CD-R :线	阵相机设置用)	1套

2. 线阵相机的规格

2-1. 概要

本 XC-OC 线阵相机由排成一列的 32 块 CMOS 图像传感器芯片组成。图像的输出可在 41.65µm (600dpi)的输出和将 2 个像素合成 1 个像素间隔为 83.3µm(300dpi)的输出之间切换。因为各芯片之 间存在间隙,在芯片之间有 1 个像素补间,600dpi 及 300dpi 的封装总像素为 9247、4639 像素。通过 合并 300dpi 的图像数据,可输出 150dpi、100dpi、75dpi。出厂设置为 600dpi。

在 CMOS 图像传感器前面装有作为成像元件使用的 SLA(自聚焦透镜阵列),以使检查对象成像。 焦点深度为约±0.3mm(600dpi)、约±0.5mm(300dpoi),安装时需要沿着主扫描方向(线阵相机的 元件排列方向)进行调焦。

本相机具备内同步/外同步切换、读取速度更改、模拟增益设置、像素补正处理(明补正、暗补正) 等功能。

(a)规格

项目	规格	备注
		芯片上的像素间隔可在 41.65 µm(600dpi)与 2 个
像素密度	600DPI	像素的总值输出 83.3 µ m(300dpi)之间切换。芯片
		之间的像素密度相当于 300dpi(封装误差±20µm)。
有效像素	9247 像素	包括 32 块芯片结构、31 个插补像素
原稿读取速度	最大速度 80µsec/line	纵横比为 1: 1 的检查速度: 520mm/sec
		左列为距离框架截面的大致距离。安装设备时的尺寸
动作距离	约 17mm	规定为距离框架基准点的距离。关于详细内容,请参
		照图纸"XC-0C103850"。
住占河由	4月10.2mm	6lp/mm 的解像度在 Chart 上为 MTF20%以上 关于
—————————————————————————————————————	£y±0.5mm	MTF 的定义,请参照(b)的内容。
粉堀ぬりたさ	CameraLink	不附带 CameraLink 线缆。
奴 '活制山刀式	Base 2TAP 60MHz	
田田泪中	+5∼+40°C	工作时
同凹温度	+5∼+40°C	保存时
周围湿度	10~90% RH	应无结露
光学系统	SLA-9 型 双列设计	TC=54mm 日本板硝子株式会社制

数据输出方式	8bit 字长 数字	2	
模拟增益	2 档设置		1 倍/2 倍通过线阵相机设置用软件进行。
信号输出	100 V/lx · sec		600 dpi、增益设置 1 时
S/N 比	47 dB		增益设置 1、饱和度(250/255 灰阶)
输入电压	12	V	关于附带的电源型号 CLC-PS50-2、电源线 3m、AC
消耗电流	约 1.0	Α	电源线(2m)、外形尺寸,请参照 CLC-PS50-2。
峰值电流 注)	约 3.7	А	注)峰值电流在接通电源后 10ms 以内发生
耗电量	约 12	W	
外形尺寸	435(W)x148.2(H)x43(D)mm		请参照图号:XC-0C103850。重量:约 3.5kg

(b) 特性参数(Ta=25°C)

明、暗输出及 MTF 的定义如下所示。

- (1)明输出(Vpmax) 读取白色基准原稿时的最大输出值(GND标准)
- (2)暗输出(Vd)

光源 OFF 时的输出值(GND 标准)

(3)明输出不均匀性及 MTF

明输出不均匀性及 MTF 的输出值使用定义在下面的输出有效值 VEp(n)。

VEp(n) = Vp(n) - Vd(n)

VEp(n)	:	第 n 个像素的有效输出值
v = P(ii)	•	为中国际东的自然制山田

- Vp(n) : 读取原稿时第 n 个像素的输出值(GND 标准)
- Vd(n) : 读取原稿时第 n 个像素的输出值(GND 标准)
- 明输出不均匀性(UEp)

??????????????????????

VEpmax、VEpmin 为读取白色基准原稿时的有效输出最大值、最小值

• MTF

22222-22222222222222222×100%

IEmax、IEmin 为读取规定的 LP/mm 梯形图时的有效输出最大值、最小值。

白色基准原稿的读取: 高反射率白纸(例:东丽株式会社的露米勒聚酯薄膜)且表面无异物、 污渍。

- 2-3. 接口
 - (a)线阵相机的名称及功能线阵相机的背面(接口连接面)如下所示。

名称	功能		
电源	向相机主体供电		
电源指示灯	相机电源 ON 时点灯		
Dsub-15	光源 ON/OFF 脉冲(LED 光源的发光控制)		
CameraLink 接口	CameraLink 与计算机的通讯/数子图像输出		

- (b)接口引脚分配
 - (1) 电源输入接口

通过单电源(12V±2V)工作。(零部件型号 欧姆龙制 XS2M-D424-2)

引脚	信号	备注
1	+12V	
2	+12V	
3	GND	
4	GND	

(2) 光源脉冲接口(Dsub-15 针 零部件型号 HD-15SS)向 LED 光源装置输出点灯控制信号。

引脚	信号		备注
1	(备用)		
2	(备用)		
3	/CH0_PULSE	CH0	LED 点灯脉冲
4	GND		
5	/CH1_PULSE	CH1	LED 点灯脉冲
6	GND		
7	/CH2_PULSE	CH2	LED 点灯脉冲
8	GND		
9	(备用)		
10	(备用)		
11	(备用)		
12	(备用)		
13	(备用)		
14	(备用)		
15	(备用)		

(3) 编码器信号 (本单元上未附带)

エンコーダ信号に同期してで画像を取得するときに使用します。(Dsub-9 ピン パーツ型番 JEY-9S-1A2B)

ピン	信号	備考
1	Z-	
2	Z+	
3	B-	
4	B+	
5	A-	
6	(NC)	エンコーダへの電
7	(NC)	源供給なし
8	(NC)	
9	A+	

<外同步信号规格>

信号电平 长线驱动器 (RS422)、ex) AM26LS31CN (TI)

• 编码器解像度计算例(采集纵横比为1:1的图像时)

- A: 编码器解像度 : 脉冲数/每转
- B: 编码器辊子圆周距离
- C: 相机像素间隔

B/A=C

例 辊子直径 63.68mm(圆周距离=200mm)、像素间隔=0.0832mm(300dpi)时为约 2404 脉 冲/每转。

• 输入输出回路

请参照"7.附录"。

(4) CameraLink

控制数字图像的输入输出。采用 Base Configuration。

引脚	信号	引脚	信号
1	GND	14	GND
2	X0-	15	X0+
3	X1-	16	X1+
4	X2-	17	X2+
5	XCLK-	18	XCLK+
6	X3-	19	X3+
7	SERTC+	20	SERTC-
8	SERTFG-	21	SERTFG+
9	CC1-	22	CC1+
10	CC2+	23	CC2-
11	CC3-	24	CC3+
12	CC4+	25	CC4-
13	GND	26	GND

2-4. 系统的连接及启动

系统的连接图如下所示。按照以下步骤进行启动。

- (1) 通过线缆连接设备。
- (2) 接通计算机(及客户的系统)的电源。
- (3) 接通相机的电源。
- (4) 通过软件进行相机的设置。
- (5) 采集图像。
 - 请务必在电源断开的状态下插拔线缆。

关于线阵相机的控制、设置、图像的采集,请参照下一项"3.软件"。

- 注)下图中为一般结构中设备之间的连接。
- 注)本系统未包含 LED 光源、LED 光源电源、光源相关线缆。

3. 软件

线阵相机图像数据的处理方法如下所示。将相机安装在机械系统并进行位置调节后,从确认图像开始 进行调节作业。在对本软件的说明中,线阵相机的"利用图像"调焦的相关部分以图像采集卡为 Matrox 公司 制以及图像采集软件以"IntelliCam"为前提。

如下所示,使用本系统附带的"CISControl Tool V3.2.X"可保存线阵相机的设置和补正数据。下面将对 以下软件的使用方法依序进行说明。

因为本 CIS Control Tool 在客户所使用的部分系统中可能无法使用。关于相机设置,请参照 7.附录的 命令通讯规格。

CISControlToolV3.2.X 文件夹中有如下文件。

en-US
 CISControl.dll
 CISControlTool.exe
 CISSubDLL.dll
 setting.ini

CISContorolTool.exe 为软件的启动图标。setting.ini 为软件设置文件。用户请勿更改。CISContol.dll 为相机控制用 DLL 文件。CISSubDLL.dll 为采集卡的通讯 DLL 访问用链接库。因为其他文件和文件夹用 于维护,请勿更改用户。

点击 CISControlTool.exe,将显示 CIS Control Tool Window。下面将依序对本工具的基本设置、补正处理、波形处理、编码器解像度、LED 控制、详细设置进行说明。

工作环境

OS	Windows7 / Windows8.* / Windows10
CPU	Pentium500MHz 以上
内存	不小于 256MB
目标框架	Microsoft .NET Framework4.0 以上

* 软件 x86 和 x64 的选择: 请根据您所使用的采集卡进行选择。

本软件是利用采集卡的通讯 DLL 设计而成的。请根据 DLL 的版本,选择 x86 和 x64 的软件。关于本公司的业绩,请参照以下内容。

可使用 x86 版的制造商:	Matrox, Euresys, Linx	(32位OS)
可使用 x64 版的制造商:	Linx(64 位 OS)、DALSA	(64 位 OS)

串行通讯的数据流

"计算机"与"相机中的 FPGA 和 EEPROM"的关系图

- 1) 接通相机电源时,保存在 EEPROM 的设置数据将自动加载到 FPGA。
- 利用 CIS Control Tool 设置的数据全部被保存到 FPGA。
 执行"保存到相机"的命令时,当前 FPGA 中的设置数据将被保存到 EEPROM。
- 3) 电源断开时, FPGA 中的数据将消失, 而 EEPROM 中的数据在电源断开后仍被保存。
- 数据分为设置寄存器和补正数据。
 CIS Control Tool 的"补正处理"选项卡的"补正数据处理"为补正数据的加载和保存命令。
 此外的设置均为设置寄存器的操作命令。

3-1. 基本设置

CISControlTool V3.2.10 x64		
基本设置 补正处理	编码器分周比 LED控制 波形显示 详细设置	
	连接到相机 📄 自动连接 端口指定	
相机长度:	385mm	
同步模式:	相机控制 ▼	
扫描速度:	42.000 🚑 (us/Line)	
↑↓ 300DPI 移动速度: 1983.33 (mm/s)		
从 INI 文件加载 保存到 INI 文件		

功能	说明
连接到相机	在进行相机控制之前,需要先连接相机一次。
(自动连接)	1) 如果选择了自动连接,将自动搜索计算机与相机的通讯端口并进行连接。
	2) 如果未选择自动连接,将利用设置在 INI 文件(setting.ini)的通讯端口控制
	相机。
	3) 使用"端口指定"时,请参考附录 A"端口指定步骤"。
相机长度	采集相机的主扫描方向长度。
同步模式	1) 编码器控制 从外部输入同步信号(使用相机主体编码器接口)
	(注:编码器信号停止时,相机的输出也将停止)
	2) 相机控制
	3) 采集卡的 CC1 信号控制
	4) 编码器自动切换
	(注:编码器信号停止时,将自动切换到内同步。)

扫描速度	在相机控制的模式下设置相机的每线扫描时间。线阵相机的像素解像度为 600dpi	
	时,将该时间内的移动距离设置为约 42μm。	
	例)扫描速度为 100µs/line 时	
	42µm/100µsec=0.42m/sec、 以 0.42m/sec 的速度使被摄体与相机相对	
	地移动,即可采集纵横比为1:1的图像。	
xxxDPI 移动速度	设置扫描速度(µs/line)后,将显示相机拍摄的被摄体的移动速度的参考值(采	
	集的图像的纵横比为 1: 1)。此外,只要输入移动速度(mm/s),即可自动调节	
	为相应的扫描速度。设置为 0.125µs/line 的解像度下的设置。	
保存到 INI 文件	将设置在软件画面的数值保存到 INI 文件(setting.ini)。(使用自动连接时,还将	
	保存搜索到的通讯端口编号。)	
从 INI 文件加载	将 INI 文件(setting.ini)内的数值设置到相机上。	

*相机连接步骤

- 1) 初次连接时,请勾选"自动连接",或设置"端口指定",并按一下"连接到相机"按钮。
- 2) 与相机成功通讯后,请按一下"保存到 INI 文件"按钮。
- 3) 下一次起将无需进行设置,直接按一下"连接到相机"按钮即可通讯。

注)重启相机的电源后,请务必按一下"连接到相机"按钮,以更新当前的设置信息。 *如果自动连接速度过慢,请使用端口指定功能(请参照附录 A)。

3-2. 补正处理

CISControlTool V3.2.10 x64	x
基本设置 补正处理 编码器分周比 LED控制 波形显示 详细设置	
~补正命令	
(明补正)目标值: 240 🚔	
数字增益: 1.000 🌪 🔲 有效	
暗補正 明补正 マ 补正有效	
补正数据处理	
保存到相机 从相机加载	
保存路径:	
C¥	
保存到电脑 从电脑加载 更改路径	

注)开始执行"保存到相机"操作后,将显示进度条,直到完成保存(约5秒钟)。

功能	说明
明补正	补正后的明输出标准
数字增益	补正后的数字增益设置。最大值为 7.996 倍。Step=0.004
(数字增益)有效	数字增益调节 ON/OFF
暗补正	在关掉光源的光的状态下点击。
明补正(*注 1)	在打开光源的光的状态下点击。
补正有效	切换原图像与补正后的图像。
保存到相机	从相机的 FPGA 将补正数据保存到 EEPROM。
从相机加载	从相机的 EEPROM 将补正数据加载到 FPGA。
更改路径	请点击更改路径,并选择计算机的文件夹。
保存到计算机	从 FPGA 将补正数据保存至计算机的上述文件夹。
从计算机加载	从计算机的上述文件夹将补正数据加载到 FPGA。

- *注 1) CMOS 传感器各像素对光学特性相同的标准样本的灵敏度(输出)不均情况进行补正,以确保 输出平坦的波形。最终,补正也将影响到光源的强度不均匀性,因此光源的安装状态发生变化时,需 要重新设置。
- 3-3. 详细设置

CISControlTool V3.2.	10 x64	
基本设置 补正处理	编码器分周比 LED控制 波形显示 详细设置	≝ ``
颜色模式: 黑白	8Bit ▼ 测试模式	、輸出 📃
模拟增益: ×1倍	▼ 曝光时间: 37.	.000 🚖 us
扫描方向: 正向	•	
	相机设定值处理	
300DPI	将当前的设定值保存到相机	
☑ 补间有效	从相机里加载设定值	
解像度设置	从相机里初始化	

功能	说明
颜色模式	显示相机主体的设置(黑白和 RGB 彩色)。
模拟增益	相机的传感器芯片的增益调节(×1 倍 或 ×2 倍)
8bit/10bit	选择图像的输出位数(在 RGB 色彩模式下无法使用。固定为 8bit。)
测试模式输出	测试模式输出 ON/OFF

曝光时间(µs)	调节 LED 点灯脉冲宽度。在 1 次扫描中,通过光源的脉冲点灯,扫描时间变化
	时也保持图像的一定亮度。
	* RGB 彩色时请勿进行设置。
	*黑白时的设置范围:
	600DPI 时为 50μs~("基本设置"的扫描速度-5μs)
	300DPI 时为 25μs~("基本设置"的扫描速度-5μs)
扫描方向控制	线阵相机的读取方向的切换选择 (关于方向,请参照相机图纸。)
解像度-补间	显示相机当前的解像度。
xxxDPI	可通过解像度设置按钮进行更改。(不显示设置按钮时为固定解像度)
	* 关于解像度的更改,请参照附录 B"解像度更改步骤"。
补间有效	设置是否使用传感器芯片之间的像素补间。

相机设定值处理	说明
将当前的设定值保存到相机	从 FPGA 将相机设定值的数据保存到 EEPROM。
从相机里加载设定值	从 EEPROM 将相机设定值的数据加载到 FPGA。软件的设置状态也
	将自动匹配。
从相机里初始化	XC-0C 系列相机的出厂数据保存在 EEPROM,因此,按一下按钮即
(XC-0C 系列)	可执行初始化,恢复为出厂状态。
从计算机里初始化为 xxxDPI	将相机设定值的数据匹配所选的解像度,从计算机的文件夹保存到
(CLC 系列)	EEPROM。装入出厂数据的光盘,按一下本按钮,指定数据的读取
	目标位置(Disk\出厂数据等)。

CLC 系列:恢复为出厂数据的步骤 (寄存器和补正数据)

1) 按一下详细设置选项卡的"从计算机初始化为 xxxDPl"按钮。

数据(相机设定值)流向为计算机→FPGA→EEPROM。

- 2) 按一下补正处理选项卡的"更改路径"按钮,选择与 xxxDPI 对应的补正数据文件夹。
- 3) 按一下补正处理选项卡的"从相机加载"按钮。

数据(补正数据)流向为计算机→FPGA。

4) 按一下补正处理选项卡的"保存到相机"按钮。

数据(补正数据)流向为 FPGA→EEPROM。

3-4. 编码器处理 (通过线阵相机主体的编码器接口进行外同步时使用)

CISControlTool V3.2.10 x64	ł				
基本设置 补正处理 编码器	基本设置 补正处理 编码器分周比 LED控制 波形显示 详细设置				
速度选择:	1倍乘	▼ (AB相生成)			
分周值:	1				
Vsync生成模式:	A相第一个上升沿	•			
Vsync内部计数器:	3456	🚔 (行数)			
Vsync延迟:	0	🚔 (行数)			
Vsync同步明补正:	同步明补正无效	•			

功能	说明			
速度选择	利用编码器信号的 AB 相沿, 合成 1 帧的脉冲数。			
	1) 1 倍乘: A 相上升沿			
	2) 2 倍乘: A 相上升沿和下降沿			
	3) 4 倍乘: AB 相上升沿和下降沿			
分周值	将合成的脉冲数进行分周(生成 Hsync) (设置范围:1~255)			
	设置值为1时无分周			
Vsync 生成模式	帧扫描时为单帧生成模式			
	1) Z 相上升沿: 编码器 Z 相信号			
	2) 内部生成: 相机的内部计数器			
	3) A 相第一个上升沿: 编码器的 A 相的第一个上升沿			
Vsync 内部计数器	将指定的线数生成为1帧 (设置范围: 1~65535)			
Vsync 延迟	按线数使生成的 Vsync 延迟并进行输出 (设置范围:1~65535)			
Vsync 同步明补正	生成的 Vsync 信号的上升沿到达时,拍摄连续的 16 线并创建明补正数据。			
	1) 同步明补正无效			
	2) 连续同步明补正			
	3) 1 次同步明补正			

3-5. LED 控制(与 CORETEC 制 LED 光源连接的情况下) 可通过 USB 从计算机进行控制。

CISControlTool V3.2.10 x64		
基本设置 补正处理 编码器分周比 LED通讯端口:	LED控制 波形显示	: 详细设置
A:		0 🚽 0×00
关灯 开灯		保存到EEPROM

功能	说明
LED 通讯端口	请从系统设置/设备管理器进行确认及设置。
A	可通过调节杆调节强度。(0-255)
关灯/开灯	LED 的开灯关灯动作
保存到 EEPROM	将 LED 光源的设置值保存到 LED 驱动器的 EEPROM。

3-6. 波形显示

在本软件上可通过 Matrox 公司的图像采集卡(Solios 和 Radiant)显示波形。

(相机需要设置为 8 位的输出)。WindowsOS 为 64 位时,支持 MIL9 与 MIL10, 32 位时仅支持 MIL9。

CISControlTool V3.2.10 x64	
基本设置 补正处理 编码器分周比	LED控制 波形显示 详细设置
Matrox采	集卡(MIL9)
Matrox 🕫	E-≑(MTI 10)
- Morovsky	

选择系统附带的图像模式的制造商名称。

•	WaveDi	splay V2	.3 (MI	L9) x64								
Ż	:件 <mark>(F)</mark>	Grab开如	告 (S)	Grab(停止(P)	原图像显示 <mark>(</mark> M)	全屏显示(D)	扩大(I)	缩小 <mark>(0)</mark>	800	两端显示开始(E)	最大值:255	
	打开	DCF(0)	Ctrl+(
	保存	图像 <mark>(S)</mark>	Ctrl+	3								
	结束	程序 <mark>(X)</mark>										

打开菜单栏的"文件(F)",点击"打开 DCF"(以 Matrox 的图像采集卡为例进行说明)。

Popen		x
💮 💬 🚽 « Coretec 🔸 CameraSoft 🔸 DCF 🛛 🗸 🍫	Search DCF	٩
Organize 🔻 New folder	• •	(?)
 Desktop Downloads Recent Places Libraries Documents Music Pictures Videos Computer Local Disk (C:) 		
File <u>n</u> ame:	DCF File (*.dcf) Open Cance	•

从扩展名为 dcf 的文件中选择要使用的文件。

然后,按一下 Grab 开始(S),将开始连续采集图像。

显示主扫描方向的图像。线阵相机整体的像素输出可通过移动 Window 下方的光标进行确认。请观察 本波形,调节光强度后,执行上述明暗补正处理。在下面进行"5.线阵相机的安装"时,使用附有图案的被 摄体,在本画面上观察移动光标时图像的模糊程度,调节倾斜程度等,以调节相机整体的焦点位置。

通过 Grab 停止(P)停止采集图像。

通过全屏显示(D)可确认缩小的整体波形。

通过原图像显示(M)可返回原图像。

通过扩大(I)可同时放大画面和波形。最大倍率为 16 倍。

通过缩小(O)可同时缩小画面和波形。最小倍率为0.1倍。

通过保存图像(S)可以 bmp 文件格式保存当前显示的画面和波形。

通过 TXT 数据保存(T)可以 txt 文件格式保存当前显示的波形数据。

附录 A: "端口指定步骤"

CISControlTool V3.2.10 x64				
基本设置补正处理	编码器分周比 LED控制 波形显示 详细设置			
[连接到相机 自动连接 端口指定			
木目7	采集卡端口号: 0 😝 💿			
	计算机的COM端□: COM3 🚽 ම			
	波特率: 57600 👻			
3000	取 消 OK			
	从 INI 文件加载 保存到 INI 文件			

功能	说明
采集卡端口号	设置通过采集卡本身的 DLL 进行通讯的卡。通常为"0"。
计算机的 COM 端口	选择将采集卡安装于计算机的 COM 端口。
波特率	选择相机的通讯波特率。(选择 57600 或 9600)

附录 B: "解像度更改步骤"

CISControlTool V	/3.2.10 x64		X
基本设置补正统	処理│编码器分周」	比 LED控制 波形显示	详细设置
颜色模式:	黑白	8Bit 👻	测试模式输出 📃
模拟增益: 扫描方向: 解像度-补修	相机解像度 600DPI 300DPI	取消 OK	37.000 🔿 us
 ◎ 300DP1 ⑦ 补间有3 	─扩展用解像度— ◎ 150DPI	扩展用解像度输出值— ⑧ 像素的平均值输出	相机 1
解像	 100DPI 75DPI 	◎ 像素的和输出	

按一下"详细设置"选项卡的"解像度设置"按钮,将显示设置面板。

*如果是可更改解像度的线阵相机,将显示"解像度设置"按钮。

功能	说明
相机解像度	更改相机本身的传感器芯片解像度的设置。输出传感器的原像素值。
(600DPI 及 300DPI)	
扩展用解像度	利用原像素值合成像素的解像度。
(150DPI、100DPI、75DPI)	
扩展用解像度输出值	可选择像素合成时的算法。
(像素的平均值输出)	
(像素的总值输出)	

附录 C: "解像度的更改、补正数据、CameraLink 规格 TAP 数相关的说明"

C.1 线阵相机的补正数据保存区域的结构

- **FPGA 的 RAM**: 电源断开时,所有数据将消失。所有的相机控制通过 FPGA 的 RAM 进行。 执行保存命令,即保存到 EEPROM。
- **出厂数据区域:** 用户无法更改。补正数据仅可保存(600DPI或 300DPI)1种。 本区域中保存有线阵相机规格的补正数据
- **用户保存区域:** 可更改用户。以出厂时规格的解像度保存补正数据。

以其他解像度使用时,在设置解像度后创建补正数据,并执行"保存到相机"操作。

- **注意**: 补正数据根据解像度自动从 EEPROM 加载到 FPGA 的 RAM, 当前的 FPGA 的 RAM 的补 正数据将被更新。同时也请参照 4.2 补正处理。
- C.2 解像度的更改
 - C.2.1 解像度说明

解像度(DPI)	原数据	补正数据
600	从传感器传来的原数据	进行明暗补正并生成。
300	从传感器传来的原数据	进行明暗补正并生成。
150	使用 300DPI 的输出数据以输出每 2 个像	使用 2000日 的补工数据
150	素的平均值。	使用 3000円 时补止数据。
100	使用 300DPI 的输出数据以输出每 3 个像	
100	素的平均值。	使用 SOODFI 的和正数据。
75	使用 300DPI 的输出数据以输出每 4 个像	使用 2000日 的补工数据
75	素的平均值。	反用 300DFT 的和正数据。
150+	使用 300DPI 的输出数据以输出每 2 个像	值田 200DPI 的补正数据
130+	素的总值。	反而 300DF 1 前州 正 数 据。
100+	使用 300DPI 的输出数据以输出每 3 个像	使用 2000日 的补工数据
100+	素的总值。	反用 SOODFT 的和正数据。
75+	使用 300DPI 的输出数据以输出每 4 个像	值田 200DDI 的认正粉捉
	素的总值。	□ 反而 3000 「□ リヤ 、正 奴 循。

C.2.2 用	記行命令更改解像度
---------	-----------

命令名	命令	参数	参数内容	初始值
解像度的设置	sdpi	i: 种类	范围: 0~9 0: 600DPI 1: 300DPI 2: 保留 3: 150DPI 4: 100DPI 5: 75DPI 6: 保留 7: 150DPI+ 8: 100DPI+ 9: 75DPI+	根据用户规格进行 设置
显示当前解像度的设置值	gdpi	无		

* 命令"gdpi"的返回值为"DPI: 0~9的数字"。

* 更改解像度后,请利用所使用的采集卡的相机文件匹配 TAP 数。 关于相机的输出 TAP 数,请参照 C.3 的表。

C.3 各相机长度和解像度的 CameraLink 输出 TAP 数参照表:

CameraLink 的驱动频率不低于 70MHz。如果低于 60MHz,请咨询本公司。

	CameraLink 输出 TAP 数			
相机型号	600DPI 及 300DPI	150DPI	100DPI	75DPI
XC-0C101920	Base-2TAP	Base-1TAP	Base-1TAP	Base-1TAP
XC-0C102850	Base-2TAP	Base-1TAP	Base-1TAP	Base-1TAP
XC-0C103850	Base-2TAP	Base-1TAP	Base-1TAP	Base-1TAP
XC-0C104800	Medium-4TAP	Base-2TAP	Base-1TAP	Base-1TAP
XC-0C105750	Medium-4TAP	Base-2TAP	Base-1TAP	Base-1TAP
XC-0C106700	Medium-4TAP	Base-2TAP	Base-1TAP	Base-1TAP
XC-0C107700	Medium-4TAP	Base-2TAP	Base-2TAP	Base-1TAP
XC-0C108650	Full-8TAP	Base-2TAP	Base-2TAP	Base-1TAP
XC-0C109400	Full-8TAP	Base-2TAP	Base-2TAP	Base-1TAP
XC-0C110600	Full-8TAP	Medium-4TAP	Base-2TAP	Base-2TAP
XC-0C111550	Full-8TAP	Medium-4TAP	Base-2TAP	Base-2TAP
XC-0C112500	Full-8TAP	Medium-4TAP	Base-2TAP	Base-2TAP
XC-0C113450	Full-8TAP	Medium-4TAP	Base-2TAP	Base-2TAP
XC-0C114450	Full-8TAP	Medium-4TAP	Medium-4TAP	Base-2TAP
XC-0C115400	Full-8TAP	Medium-4TAP	Medium-4TAP	Base-2TAP
XC-0C116350	Full-8TAP	Medium-4TAP	Medium-4TAP	Base-2TAP

XC-0C117300	Full-8TAP	Medium-4TAP	Medium-4TAP	Base-2TAP
XC-0C118250	Full-8TAP	Medium-4TAP	Medium-4TAP	Base-2TAP
XC-0C119200	Full-8TAP	Medium-4TAP	Medium-4TAP	Base-2TAP
XC-0C120200	Full-8TAP	Medium-4TAP	Medium-4TAP	Base-2TAP
XC-0C121150	Full-10TAP	Medium-4TAP	Medium-4TAP	Base-2TAP
XC-0C122100	Full-10TAP	Full-8TAP	Medium-4TAP	Medium-4TAP
XC-0C123100	Full-10TAP	Full-8TAP	Medium-4TAP	Medium-4TAP

C.4 解像度更改步骤的总结 : 已创建并保存 600dpi、300dpi 的补正数据为其前提。

- C.4.1 串行命令时
 - 1) 请利用命令"sdpi"设置解像度。
 - 2) 请利用命令"sst"设置相机的扫描速度。
 - * 300DPI、150DPI、100DPI、75DPI 时最小值为 42µs
 - * 600DPI 时的最小值为 80µs

可选项: 请利用命令"slp"设置光源脉冲宽度。

- C.4.2 利用 CIS Control Tool 时
 - 1) 请按一下"详细设置"的"解像度设置"按钮。

CISControlTool V	/3.2.10 x64		
基本设置 补正纲	処理 編码器分周	比 LED控制 波形显示	详细设置
颜色模式:	黑白	8Bit 👻	测试模式输出 📃
模拟增益: 扫描方向: -解像度-补间 ◎ 300DPI ▼ 补间有:	相机解像度 600DPI 300DPI 扩展用解像度 150DPI 	取消 OK 扩展用解像度輸出值 ③ 像素的平均值输出	37.000 🗼 us
解像	 100DPI 75DPI 	 像素的和输出 	

- 2) 选择需要的解像度后,点击"OK"按钮。
- 3) 在"基本设置"的"扫描速度"处设置扫描速度。

*300DPI、150DPI、100DPI、75DPI 时最小值为 42µs

*600DPI 时的最小值为 80µs

可选项:请在"详细设置"的"曝光时间"处设置光源脉冲宽度。

- 4. 相机的安装
 - 4-1. 相机的安装

如要将线阵相机安装到客户的设备主体,使用"6.外形尺寸图 XC-0C103850"侧面的定位销以进行固定。

线阵相机的动作距离为 17mm。调节焦点位置时,通过观察线阵相机的波形(上述)或采集的二维 图像(Matrox IntelliCam 等)实施以下步骤。

- 1) 因为焦点深度在 600dpi 时为约±0.3mm(300doi 时为约±0.5mm),请将厚度为 17mm 的间隙板 安装在线阵相机的主扫描方向,使其与被摄体平面平行。
- 2) 从被摄体向扩大间隙的方向,将相机移动到对焦的位置。
- 3) 如果相机的左右对焦状态不同,也按上述①调节左右的间隙。 如要进行对焦,请在顾客的装置主体侧安装调节驱动解像度为约 0.1mm 的驱动轴和调节相机左右 方向的间隙的机构。
- 4-2. 采集图像时的注意事项

如果采集的图像在主扫描方向出现条纹等不均匀的情况,作为补正处理,请执行明补正。如果不均匀 的情况仍未消失,相机上可能附着有异物。请目视检查相机入光侧,并用干净的空气进行清洁。

5. 使用注意事项

清洁附着在线阵相机表面的异物时,请先用酒精清洁防护玻璃。如果仍未能清除异物,请拆下防护玻 璃后用干净的气源等进行清洁,注意避免触摸到相机拍摄用的镜头阵列表面。如果不得已需要用酒精清洁 镜头阵列表面,请将纱布稍微浸在甲醇、乙醇或异丙醇后清洁数次。如果仍无法清除异物,请联系本公司。

因为部分产品未附带防护玻璃,请充分确认后进行清洁(动作距离 17mm 产品不带防护玻璃)。

为防止异物进入线阵相机单元内,请勿拆卸侧板等。

附带线缆在单元侧通过接插件连接。因此,如果对线缆施力过度,可能导致接口部分接触不良。敬请 注意。

- 6. 外形尺寸图
 - 1) 线阵相机图纸 XC-0C103850
 - 2) 相机电源图纸 CLC-PS50-2
- 7. 附录
 - 1) CameraLinkI/F 规格
 - 2) 同步处理
 - 外同步 编码器输入模式
 - 外同步 CameraLink IFCC1 信号
 - 内同步 相机内部计数器
 - 3) 命令通讯规格

江苏省无锡市新吴区新华路 5 号创新创意产业园 B 栋 213 室 0510-81810401